//Root finding algorithm using newton method
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringBuffer sb = new StringBuffer();
String m="";
while((m=br.readLine())!=null){
if("#".equals(m.trim()))
break;
StringTokenizer st=new StringTokenizer(m);
int p=Integer.parseInt(st.nextToken()),
q=Integer.parseInt(st.nextToken()),
r=Integer.parseInt(st.nextToken()),
s=Integer.parseInt(st.nextToken()),
t=Integer.parseInt(st.nextToken()),
u=Integer.parseInt(st.nextToken());
if(function(0, p, q, r, s, t, u) *function(1, p, q, r, s, t, u)>0){
sb.append("No solution\n");
}else{
sb.append(String.format("%.4f\n",netwonMethod(p, q, r, s, t, u)));
}
}
System.out.print(sb);
}
static double function(double i,int p,int q,int r,
int s,int t,int u){
return 1.0*p*Math.exp(-i)+1.0*q*Math.sin(i)
+1.0*r*Math.cos(i)+1.0*s*Math.tan(i)+t*i*i+u;
}
static double dfunction(double i,int p,int q,int r,
int s,int t,int u){
return -1.0*p*Math.exp(-i)+1.0*q*Math.cos(i)
-1.0*r*Math.sin(i)+1.0*s/(Math.cos(i)*Math.cos(i))+2*t*i;
}
static double netwonMethod(int p,int q,int r,
int s,int t,int u){
if(function(0, p, q, r, s, t, u) ==0)
return 0;
double ans=0.5;
while (true){
double newans = ans - function(ans, p, q, r, s, t, u)/dfunction(ans, p, q, r, s, t, u);
if (Math.abs(newans-ans) < eps)
return ans;
ans=newans;
}
}
static double eps=1E-7;
}
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringBuffer sb = new StringBuffer();
String m="";
while((m=br.readLine())!=null){
if("#".equals(m.trim()))
break;
StringTokenizer st=new StringTokenizer(m);
int p=Integer.parseInt(st.nextToken()),
q=Integer.parseInt(st.nextToken()),
r=Integer.parseInt(st.nextToken()),
s=Integer.parseInt(st.nextToken()),
t=Integer.parseInt(st.nextToken()),
u=Integer.parseInt(st.nextToken());
if(function(0, p, q, r, s, t, u) *function(1, p, q, r, s, t, u)>0){
sb.append("No solution\n");
}else{
sb.append(String.format("%.4f\n",netwonMethod(p, q, r, s, t, u)));
}
}
System.out.print(sb);
}
static double function(double i,int p,int q,int r,
int s,int t,int u){
return 1.0*p*Math.exp(-i)+1.0*q*Math.sin(i)
+1.0*r*Math.cos(i)+1.0*s*Math.tan(i)+t*i*i+u;
}
static double dfunction(double i,int p,int q,int r,
int s,int t,int u){
return -1.0*p*Math.exp(-i)+1.0*q*Math.cos(i)
-1.0*r*Math.sin(i)+1.0*s/(Math.cos(i)*Math.cos(i))+2*t*i;
}
static double netwonMethod(int p,int q,int r,
int s,int t,int u){
if(function(0, p, q, r, s, t, u) ==0)
return 0;
double ans=0.5;
while (true){
double newans = ans - function(ans, p, q, r, s, t, u)/dfunction(ans, p, q, r, s, t, u);
if (Math.abs(newans-ans) < eps)
return ans;
ans=newans;
}
}
static double eps=1E-7;
}